The Relaxation Wall: Experimental Limits to Improving MPI Spatial Resolution by Increasing Nanoparticle Core size.
نویسندگان
چکیده
Magnetic Particle Imaging (MPI) is a promising new tracer modality with zero attenuation in tissue, high contrast and sensitivity, and an excellent safety profile. However, the spatial resolution of MPI is currently around 1 mm in small animal scanners. Especially considering tradeoffs when scaling up MPI scanning systems to human size, this resolution needs to be improved for clinical applications such as angiography and brain perfusion. One method to improve spatial resolution is to increase the magnetic core size of the superparamagnetic nanoparticle tracers. The Langevin model of superparamagnetism predicts a cubic improvement of spatial resolution with magnetic core diameter. However, prior work has shown that the finite temporal response, or magnetic relaxation, of the tracer increases with magnetic core diameter and eventually leads to blurring in the MPI image. Here we perform the first wide ranging study of 5 core sizes between 18-32 nm with experimental quantification of the spatial resolution of each. Our results show that increasing magnetic relaxation with core size eventually opposes the expected Langevin behavior, causing spatial resolution to stop improving after 25 nm. Different MPI excitation strategies were experimentally investigated to mitigate the effect of magnetic relaxation. The results show that magnetic relaxation could not be fully mitigated for the larger core sizes and the cubic resolution improvement predicted by the Langevin was not achieved. This suggests that magnetic relaxation is a significant and unsolved barrier to achieving the high spatial resolutions predicted by the Langevin model for large core size SPIOs.
منابع مشابه
Optimization of nanoparticle core size for magnetic particle imaging.
Magnetic particle imaging (MPI) is a powerful new research and diagnostic imaging platform that is designed to image the amount and location of superparamagnetic nanoparticles in biological tissue. Here, we present mathematical modeling results that show how MPI sensitivity and spatial resolution both depend on the size of the nanoparticle core and its other physical properties, and how imaging...
متن کاملSize-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
PURPOSE Magnetic particle imaging (MPI) is a recently developed imaging technique that seeks to provide ultrahigh resolution and tracer sensitivity with positive contrast directly originated from superparamagnetic iron oxide nanoparticles (NPs). MPI signals can be generated from a combination of Néel relaxation, Brownian rotational diffusion, and hysteretic reversal mechanisms of NPs in respons...
متن کاملDesign of Superparamagnetic Nanoparticles for Magnetic Particle Imaging (MPI)
Magnetic particle imaging (MPI) is a promising medical imaging technique producing quantitative images of the distribution of tracer materials (superparamagnetic nanoparticles) without interference from the anatomical background of the imaging objects (either phantoms or lab animals). Theoretically, the MPI platform can image with relatively high temporal and spatial resolution and sensitivity....
متن کاملInvestigation of the Spatial Resolution and Field of View with Change of Magnification in VRX CT
Introduction: Variable resolution x-ray (VRX) CT is a new type of CT that can image objects at various spatial resolutions. In a VRX CT scanner, the spatial resolution increases at the cost of reduction in the field of view (FOV). An important factor that limits the spatial resolution of the VRX CT is the effect of focal spot size. Also, the optimum magnification is different at each incident a...
متن کاملEncapsulation of Peppermint Oil with Arabic Gum-gelatin by Complex Coacervation Method
The gelatin/gum Arabic microcapsules encapsulating peppermint oil were prepared by complex coacervation using tannic acid as hardening agent. The effects of various parameters, including concentration of wall material, core material, tannic acid and tween80 were investigated on particle size and encapsulation efficiency. For statistical evaluation of the parameters, Taguchi method has been used...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedical physics & engineering express
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2017